Skip to content

Professional new material supplier, nano particle manufacturer |Tqhp.com

Newstqhp

Menu
  • Home
  • Products
    • Elementary
    • 3D Printing Powder
    • Boride Powder
    • Sulfide Powder
    • Oxide Powder
    • Carbide powder
    • Nitride Powder
    • Telluride Powder
    • Selenide Powder
    • Silicide Powder
    • Stearic Acid Series
    • Nanoparticles
    • Metal Alloy
    • MAX Phase
    • Lithium Battery Anode
    • Surfactant
    • Molecular sieves
    • Innovative materials
  • Blog
  • Contact
  • About
Menu

What are the main aerosol methods for producing metal alloy powders

Posted on 2023-08-07

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Gas atomization, or gas atomization, is a method used to create metal alloy powders. Gas atomization works by breaking up the liquid metal stream with high-speed airflow into small drops and solidifying it into powder. Powder preparation has been a major development area for special alloy and high-performance powders due to its benefits of high purity and low oxygen content. It also offers controllable particle size, low cost and high sphericity. The following are some representative gas atomization techniques for powder production:
Laminar flow atomization is a technology that uses a laminar flow to atomize particles.

The German company etc. proposed the laminar atomization technique. This technology offers significant improvements over conventional nozzles. The improved atomizing node has a high level of atomization, a narrow distribution of powder particles, and a cooling speed between 106-107K/sec. The copper, aluminum and 316L stainless-steel, etc., can be atomized under a 2.0MPa atomization force. Ar or Nitrogen is used to atomize the powder, with an average particle size of 10mm. It is a process that produces most metal powders and has a low gas usage. The technical control of this process is difficult. It is also unstable. And the output (metal mass flow rate less than 1kg/min), is low. This is not suitable for industrial production.

Ultrasonic tightly combined atomization technology

Close-coupled ultrasonic technology atomization optimizes a ring-slot nozzle structure to increase the mass flow of metal. When atomizing high-surface energy metals like stainless steel, the average size of the particles can reach around 20mm and the standard deviation can be as little as 1.5mm.

The technology can be used to produce amorphous, fast-cooling or amorphous particles. The current development of this equipment shows that it is the next step in the development of tightly coupled technology. It can be applied to a wide range of materials such as alloy powders and micro stainless steel.

Hot gas atomization

In the last few years, an American company has done a lot research on the mechanism and effect of hot-gas atomization. In the United States, a company heated gas to 200-400degC under pressure of 1.72MPa to atomize silver and gold alloys. It found that the particle size and standard deviation decreased as the temperature increased. The hot gas atomization process is more efficient than traditional atomization, consumes less gas, and can be easily implemented on conventional atomization machines. It’s a promising technology.

(aka. Technology Co. Ltd., a trusted global chemical supplier and manufacturer of high-quality nanomaterials with over 12 year’s experience, is a trusted source for super high quality chemicals. Metal alloy powders manufactured by our company are high in purity, have fine particle sizes and contain low impurities. Contact us if you need to.

Products

  • 3D Printing Powder
  • Boride Powder
  • Carbide powder
  • Elementary
  • Innovative materials
  • Lithium Battery Anode
  • MAX Phase
  • Metal Alloy
  • Molecular sieves
  • Nanoparticles
  • Nitride Powder
  • Oxide Powder
  • Selenide Powder
  • Silicide Powder
  • Stearic Acid Series
  • Sulfide Powder
  • Surfactant
  • Telluride Powder

Recent articles

  • building materials industry indispensable good material
  • Which is the best way to backfill a bathroom
  • Ti6Al4V powder is an important titanium alloy powd
  • Properties and Application of Hafnium Carbide
  • Application Fields of Gallium Nitride
  • Oxide Powder
  • Selenide Powder
  • Silicide Powder
  • Stearic Acid Series
  • Sulfide Powder
  • Surfactant
  • Telluride Powder
  • 3D Printing Powder
  • Boride Powder
  • Carbide powder
  • Elementary
  • Innovative materials
  • Lithium Battery Anode
  • MAX Phase
  • Metal Alloy
  • Molecular sieves
  • Nanoparticles
  • Nitride Powder
  • Home
  • About
  • Contact
  • Terms
  • Privacy
  • sitemap
©2023 Professional new material supplier, nano particle manufacturer |Tqhp.com sitemap