Skip to content

Professional new material supplier, nano particle manufacturer |Tqhp.com

Newstqhp

Menu
  • Home
  • Products
    • Elementary
    • 3D Printing Powder
    • Boride Powder
    • Sulfide Powder
    • Oxide Powder
    • Carbide powder
    • Nitride Powder
    • Telluride Powder
    • Selenide Powder
    • Silicide Powder
    • Stearic Acid Series
    • Nanoparticles
    • Metal Alloy
    • MAX Phase
    • Lithium Battery Anode
    • Surfactant
    • Molecular sieves
    • Innovative materials
  • Blog
  • Contact
  • About
Menu

Lanthanum Nitride Catalysts With HSE and Spin-Orbit Coupling

Posted on 2023-05-24

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



lanthanum nitride (LaN) is an important semiconductor for a variety of applications. It is used as a precursor in the production of phosphors, as a host material in fluorescent lighting and X-ray detectors, and for petroleum cracking catalysts. It is also an ingredient in hydrogen-storage alloys and rechargeable batteries.

Structural and Electronic Properties of LaN with HSE and Spin-Orbit Coupling

The bandgap of LaN is 0.62 eV at the X point, with a direct gap at X that extends up to the p3-p1/2 bands. The valence band is mainly derived from N 2p orbitals, while the conduction band is mainly based on spatially extended unoccupied La 5d orbitals.

Compared with other III-nitrides, LaN has a band alignment similar to ScN and has a relative band offset of 0.3 eV at the interface. This offset is comparable to the 3-fold degeneracy of the N p orbitals at G and X, which are broken by spin-orbit coupling.

Although lanthanum nitrides enable highly efficient ammonia synthesis, they are prone to chemical sensitivity to air and moisture. We demonstrate that by introducing Al into the LaN lattice, a metallic bond can be formed between the lattice N and the surface, resulting in improved durability under air and moisture without altering the catalytic functionalities. Moreover, the effect of the metallic bond formation on the catalytic activity is comparable to previously reported TM/LaN catalysts, suggesting that La-Al metallic bonds can be an effective mechanism for improving the chemical stability of rare-earth nitrides with retention of their catalytic functionalities.

Products

  • 3D Printing Powder
  • Boride Powder
  • Carbide powder
  • Elementary
  • Innovative materials
  • Lithium Battery Anode
  • MAX Phase
  • Metal Alloy
  • Molecular sieves
  • Nanoparticles
  • Nitride Powder
  • Oxide Powder
  • Selenide Powder
  • Silicide Powder
  • Stearic Acid Series
  • Sulfide Powder
  • Surfactant
  • Telluride Powder

Recent articles

  • building materials industry indispensable good material
  • Which is the best way to backfill a bathroom
  • Ti6Al4V powder is an important titanium alloy powd
  • Properties and Application of Hafnium Carbide
  • Application Fields of Gallium Nitride
  • Oxide Powder
  • Selenide Powder
  • Silicide Powder
  • Stearic Acid Series
  • Sulfide Powder
  • Surfactant
  • Telluride Powder
  • 3D Printing Powder
  • Boride Powder
  • Carbide powder
  • Elementary
  • Innovative materials
  • Lithium Battery Anode
  • MAX Phase
  • Metal Alloy
  • Molecular sieves
  • Nanoparticles
  • Nitride Powder
  • Home
  • About
  • Contact
  • Terms
  • Privacy
  • sitemap
©2023 Professional new material supplier, nano particle manufacturer |Tqhp.com sitemap